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Abstract. A new analytic tight-binding (TB) pair potential and hopping integral are con- 
structed for hydrogenic s orbitals, by mupling the Harris-Foulkes scheme with Anderson’s 
chemical pseudopotential theory. The validity of using a fixed, transferable TB par- 
ametrization is studied and the limitations are found to be twofold. First, although quali- 
tatively reproducing ab inirio equilibrium binding energies and atomic separations for 
diatomic and bulk metallic simple cubic (sc) and face centred cubic (FCC) hydrogen, bulk 
moduli are globally poorly obtained. This reflects thestrong environment dependence of the 
pair potential and hopping integral. Secondly. errors are incurred by keepingonly pairwise 
terms in a cluster expansion of the exchange-correlation functional. They are found to be 
non-negligible for bulk systems, being about 25% of the total binding energy for the sC and 
FCC lattices. 

1. Introduction 

Inorder to perform large-scale atomisticsimulationsofcomplex systems suchassurfaces, 
grain boundaries and amorphous solids, a model needs to be computationally economic, 
to be quantum-mechanically based and to incorporate intuitive concepts that lead to 
an improved understanding of physical trends and mechdnisms. One such scheme, 
applicable to both semiconductors and transition metals, is the so-called tight-binding 
bond (TBB) model (Sutton eral1988, Pettifor 1990 and references therein). Within this 
approach the binding energy of a collection of atoms is written in terms of a pairwise 
repulsive energy, a promotion energy and a covalent bond energy: 

EB Erep f Epiom + (1) 
In the simplest minimal basis treatment the covalent bond energy is determined by 
solving a two-centre, orthogonal Slater-Koster Hamiltonian (Slater and Koster 1954). 
Interactions are usually assumed to be short-ranged and restricted to only first or first 
and second nearest neighbours. 

In principle, the simple form of equation (1) can be justified from first principles. 
First, the two-centre character of the covalent bond energy followsfrom either chemical 
pseudopotential (Anderson 1969) or muffin-tin orbital (Andersen and Jepsen 1984) 
theory, where a judicious choice of localized basis enable the necessary one-electron 
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secular equation to  be written in a two-centre format. Secondly, the pairwise nature of 
the repulsive term can be justified from within the Harris-Foulkes variational scheme 
(Harris 1985, Foulkes 1987). which allows the density-functional ground-state energy 
to be (approximately) written in a one-electron eigenvalue sum plus pair potential form 
(Foulkes and Haydock 1989, Sutton eta1 1988). 

In practice, although providingan appealing conceptual framework to work within, 
thesuccessandapplicabilityofany tight-binding@) schemecriticallyrestsonasuitable 
parametrization or construction of the constituent two-centre hopping integralsand pair 
potential. For example, Harrison's (1980) commonly used 'universal' inverse-square 
scalingwith interatomicseparation R for the hoppingintegrals, together with an empiri- 
cal form for the pair potential (say) p - R-', is only valid close to its fitted regime of 
fourfold coordinated semiconductors about equilibrium separations. Outside this range 
the description is poorer (Paxton eta[ 1987, Paxton 1989). Although alternative scalings 
can extend this range to include qualitatively close-packed systems and predict the 
favoured geometries of silicon microclusters (Goodwin eta( 1989). in general there is no 
guarantee a priori that a semiempirical parametrization will be applicable outside its 
fitted domain. This rransferubiliry between environments must always be tested and 
weighed against previous benchmark results. At the other extreme, transferable, 
environment-independent hopping integralsconstructed from somefkedbasis functions 
tend to have long-range tails that bring in too many two-centre and non-negligible three- 
centre integrals. Up to sixth-nearest-neighbour interactions need to be included to 
obtain a reasonable silicon band structure if a basis of pseudo-atomic orbitals are used 
(Jansen and Sankey 1987). On the other hand more localized orbitals (Hoshino el 
a! 1985, 1986, Anderson 1968) that give short-ranged hopping integrals suitable for 
molecular dynamicsimulations also tend to be stronglyenvironment-dependent. In the 
case of the pair potential there is a general dearth of knowledge as to appropriate 
functional forms to use. Only for simple metals (Pettifor and Ward 1984) using second- 
order pseudopotential theory and for the germanium dimer (Foulkes and Haydock 
1989) using the Harris-Foulkesscheme have explicit forms been constructed. Otherwise 
in the literature the pair potential has always been modelled empirically by choosing 
some simple functional form and fitting any free parameters to benchmark ab initio or 
experimental results. 

In this paper we construct, for the simplest case of single hydrogenic s orbitals, an 
analytic pair potential and hopping integral by working within the HarrioFoulkes 
scheme and using a chemical pseudopotential basis. The limitations of using a trans- 
ferable TB parametrization are then studied by comparing the two separate cases where 
the basis orbitals are either fixed or allowed to relax to the local environment. The 
assumed pairwise nature of the repulsive energy is investigated by explicitly estimating 
the errors incurred in keeping only two-centre terms in the cluster expansion of the 
exchange-correlation functional. Lastly the physical decomposition of the binding 
energy is used to gain information on the equilibrium and asymptotic behaviour of the 
pair potential. 

The layout of the paper is as follows. In section 2 general stationary functionals and 
the specific Harris-Foulkes scheme are described. Applying the latter to the hydrogen 
dimer, problems in constructing unique tight-binding hopping integrals and pair poten- 
tialsarediscussed. Insections3and4 wederiveanew hoppingintegraland pair potential 
by coupling the Harris-Foulkes scheme with Anderson's chemical pseudopotential 
theory. Modellingexchange-correlation effects within the Xa approximation and using 
a variational representation of the chemical pseudopotential orbitals. explicit closed 
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analytic expressions for these functions are obtained. In section 5 the limitations of 
using fixed transferable parametrization of the hopping integral and pair potential are 
determined variationally, and estimates of cluster expansion errors of the exchange- 
correlation functional are evaluated. Finally the resulting fixed pair potential and hop- 
ping integral are plotted and the relative importance of various contributions to the 
cohesive energy are discussed. 

2. The Harris-Foulkes scheme 

2.1. Stationary functionalr 

Although density-functional (DF) theory has provided important benchmark ab initio 
calculations, and a formal foundation to a one-electron picture of solids (see e.g. Jones 
and Gunnarsson 1989), its inherent self-consistent nature makes it computationally 
costly. To reduce this limitation, alternative functionals have been suggested that pro- 
vide approximations to the DF ground-state energy (Dunlap et al 1979, Harris 1985, 
Foulkes 1987). Exploiting the variational principle and expanding the DF energy func- 
tional about Vi" and pi", initial guesses for the ground-state one-electron potential and 
valence density respectively, a general class of these functionals (Jacobsen et a/ 1987, 
Foulkes and Haydock 1989) is defined by 

+ E,[p'"] + E ,  - 1 @'"(Vi" - V,s [Pi" I )  dr (2) 

where 

VKS [pi"] = V $  + V,[p'"] + p..[p'"] (3)  
is the Kohn-Sham one-electron potential evaluatedat pi". Here the 'inert'core electrons 
are incorporated within the pseudopotential V E ,  and the Hartree and exchange- 
correlation potentials are denoted by VH[p]  = J p / [ r  - r'[ dr' and 
,u&] = 6EW[p] /6p,  where E&] is the usual exchange-correlation functional. EN is 
the ion-ion interaction. The eigenvalues of state i making up the band term are 
obtained from the effective one-electron equation 

(-vz + = E i I j l i .  (4) 

pout = ni 1 qi 12 ( 5 )  

Once this has been solved, an output charge density 

i 

may be constructed from the eigenstates Ijli and their occupation numbers ni. 
The strength of this approximate scheme, over a conventional solution of the Kohn- 

Sham DF equations (Kohn and Sham 1965), is that no self-consistent cycling is needed. 
Only a knowledge of Vi" and pi" is required to estimate the DF ground-state energy Es, 
incurring second-order errors of the form 

E ,  = E[V'",p'"]  + O((p0"' - pgs)2)  + O((p0"' -p i " )>)  

+ O((p0"' - p")(Vi" - V,[p'"])). (6) 
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Although the above functional applies to any choice of Vi" and pi", a simpler form 
can be obtained by letting V'" = VKs[pi"]. In this special case equation (2) reduces to the 
following functional, independently introduced by Harris (1985) and Foulkes (1987): 

EHF[P'"] = ni&i[V~s[P'"]] - (P'"($L',[P'"] + r , , [ p " ] ) d r  

+ E,,[P'"l+ EN. (7) 
As with the more general expression, the Harris-Foulkes functional is stationary, 

attaining the DF ground-state energy, only when the initial trial density p" equates with 
the true ground-state density pe. Otherwise errors are second order in poU1 - p'" and 
PO"' - p e ,  and the accuracy of the Harris-Foulkes energy depends on the choice of pi". 
One form used here, which is within the spirit of tight binding, is to assume a simple 
superposition of atomic or pseudo-atomic densities pa. namely 

p"' = c p P A .  (8)  
A 

Using this form the Harris-Foulkes scheme has provided good estimates of full self- 
consistent DF calculations for diatomic molecules (Harris 1985, Foulkes and Haydock 
1989, Averill and Painter 1990). bulk metals and semiconductors (Polatoglou and 
Mcthfessell988) and more recently first-row transition metals (Paxton era/ 1990). Even 
for strongly ionic systems good approximations can be obtained. For example, for the 
compound NaCl the DF binding energy, lattice constant and bulk modulus are all 
estimated to within 10%. 1% and 11% respectively (Polatoglou and Methfessel 1988). 
For ionic molecules such as LiF the results are poorer. although (as in general) improve- 
ments are possible if a limited degree of self-consistency is incorporated and the atomic 
densities are allowed to relax to their environment (Averill and Painter 1990). Similarly 
recent work on aluminium (Finnis 1990) has also shown that if the atomic densities are 
renormalied toshrink the rangeoftheutailsthengoodestimatesofsurfaceandvacancy 
formation energies can be obtained. 

2.2.  The hydrogen dimer 

As a preliminary step in constructingm hopping integral and pair potential we calculate 
the density-functional (DF) and Harris-Foulkes ( H F ) ~  total energies for the hydrogen 
molecule. by following Gunnarsson and Lundqvist (1976) and using a variational 1s 
minimal basis, 

x d r )  = ( E 3 / / . z ) l i 2  ex~(-ErA.,). (9) 
Here r, ( i  = A ,  5 )  are distances from the atomic sites A and B situated a distance R 
apart. In order to obtain simple expressions for the exchange-correlation energy terms 
we approximate the local density exchange-correlation functional with the Xn form, 
so that p,[p] = dE,,[p]/dp = &e(p) is proportional to (Slater 1974). The 
total energy of the hydrogen molecule can then be written within the DF and HF approxi- 
mations as 

EDFfHF)  = 12E2/(l + s)l[l - ( K  + '91 - [2E//(1 + - J - 2K) 

+ 2/R + @F(HF) + E%(HF) (10) 

t We hope the reader will not c o n h e  ~ F a s a n  abbreviation foreitherHariree-Fockor Hellmann-Feynman. 
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where the common first three terms are the kinetic, electron-ion and ion-ion energies. 
The relevant electron-electron and exchange-correlation contributions are given by 

ECe DF - - [5/(1 + S)-'](n + J' + 4L + 2 K ' )  
E e e  - (11) 

w - [25/(1 + S ) ] ( $  + J' + 2L) - E($ + J ' )  

and 

3 - s  8 

Here the overlap integral between the basis functions is denoted by S = (xA Ixe) and the 
input and output densities are given by 

(13) 
Pi" = P A  + P E  

PO"' = Z I V ~  l 2  = [1/'(1+ S)I(PA + PE -+ ~ X A X E )  

where p,(r) = Ixl Iz (i = A ,  B )  are atomic densities and the bondingorbital wavefunction 
is 

VJgs = {1/[2(1 + s ) l " 2 ) c r A  + 2s). (14) 

TheintegraIsK, K', J ,  J',Sand L arelisted by Slater (1963). All haveclosedanalytic 
forms except for the second-order exchange integral K ' ,  which we interpolate using an 
accurate rational polynomial approximation (Abramowitz and Stegun 1965) for the 
related exponential integral. In theappendix wegive the exchange-correlation integrals 
f y ,  I F  and I;, and show how by changing to spheroidal coordinates these may be 
reduced to a few one-dimensional integrals that can be evaluated using standard numeri- 
cal integration routines. In passing, obvious typographical errors in Slater's (1963) table 
3-1 for the energy integrals K' and J xA(-V2)xB do were corrected. 

In figure 1 the DF and HF minima! basis energies are displayed (equation (10)). For 
the DF benchmark case, an optimal exponent SDF(R) was determined that minimized 
the energy for each fixed interatomic separation R, with the exchange-correlation 
measure LY chosen to ensure that Kolos and Wolniewicz's (1965) accurate equilibrium 
binding energy is reproduced at equilibrium. The HF energy curve was then plotted for 
thisfixedvaluen = 0.8266andforthesameoptimal~~exponent (i.e. E,&) = EDF(R)). 
With this latter constraint, differences between our minimal basis solutions are only in 
the excbange-correlation and electron-electron terms (equations (11) and (12)). 

The HF scheme thus provides an excellent approximation to the full 'self-consistent'. 
minimal basis DF solution, being indistinguishable from it in figure 1. In agreement with 
recent work of Averill and Painter (1990) the success of this scheme can be attributed 
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R l e . " . )  

Figure 1. Comparisonofthe minimal basis 
density-functional (DF). HarrisFoulkes 
(HF) and chemical pseudopotential (CP) 
binding energies for diatomic hydrogen. 
The inset gives the optimal orhital 
exponents EDr(R) and E A R )  that mini- 
mize thc DP and CP binding energies. For 
the HF exponent we set E , , ~ ( R I - , ~ R ) .  
Inallcasesn = 0.8266.Thelullcurvegives 
the accurate results of Kolos and Wol. 
niewin(1965) (KW). 

to the cancellation of (positive) electron-electron and (negative) exchange-correlation 
correction terms, namely 

and 

AE" = E& - E &  = '1 Ap A p ' ( 3 )  + ~ ( ( A Q ) ~ )  2 p = p i "  

where Ap = p""'(r) - p'"(r) and Ap' = p""'(r') - pin(+ From their test studies of dia- 
tomic molecules Averill and Painter (1990) found this cancellation ( - A P / A / F )  to 
range from 0.79 for weakly bonded molecules such as Be, to 0.13 for strongly bonded 
ionic molecules such as LiF. In figure 2 for our minimal basis treatment of diatomic 
hydrogen, owing to the same exponent being used for both the DF and HF cases, we 
find this cancellation is almost complete. Further, figure 2 also emphasizes the purely 
stationary nature of the HF scheme, in that it is not guaranteed to be a variational upper 
bound of the DP energy. For R 3 1.6 au, it is in fact lower in energy. 

The appropriateness of using a simple minmal basis treatment and modelling 
exchange-correlation ef€ects within the Xa approximation is also borne out, with the 
restricted DF solution reproducing well the accurate results of Kolos and Woiniewicz 
(1965) for equilibrium separations. For large R there are well known discrepancies due 
to the incomplete cancellation of the exchange-correlation functional E&] with the 
electron-electron term, when theexact functional formof the former isunknown (Harris 
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Figure 2. Cancellation of the exchange- 
correlation and electron-electron cwrrec- 
tion r ems  AEc'acI = E'"' oC - EEF'.I'.e 
full curve gives the total energy difference 
A E  = EDF - EHP = A€? + AF'between 
the density-functional (DF) and Harris- 
Foulkes (HF) binding energy curves of 
figure 1. 

1984). This problem may be removed by allowing a spin-density state to evolve for 
R 2 3.2 au (Gunnarsson and Lundqvist 1976). 

Although the HF scheme gives a simpler expression than the DF minimal basis treat- 
ment, in that all terms are analytic (besides the exchange-correlation integrals), it still 
does not enable the total energy to be written generally in the TBB form of equation (1). 
Primarily, this is due to factors like 1/(1 + S), which are not well approximated by the 
first few terms in a binomial expansion, as at equilibrium S - 0.7. This prevents us from 
constructing a separable pairwise non-orthogonality contribution. To overcome this 
problem we turn to chemical pseudopotential theory. 

3. Chemical pseudopotentials 

3.1. General theory 

Within any minimal basis solution of the one-electron equation (4), there exists an extra 
degree of freedom that a n  be exploited, namely the choice of basis functions. One 
possible set is given by Anderson's (1968, 1969, 1983) chemical pseudopotential (CP) 
equation. In  order to define the localized orbital IA), the one-electron potential 

vin = v, + E vl, 
B # A  

is split into the potentials VA and Vl, associated with site A and its neighbouring sites B 
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respectively. Each crorbital IA)is then determinedby solvingthe non-lineareigenvalue 
equation 

A J Skirtner and D G Pettifor 

where the effects of neighbouring sites are felt through the screened pseudopotentials 

PL = (1 - IB)(BI)Vb. (19) 

Expanding the one-electron eigenfunctions lq,) in terms of these basis orbitals {\A)}  
results in a secular eigenvalue equation that is exactly two-centre in form, namely 

detl(B[ V b  IA)(1 - B A B )  - ( E ,  - EA)BA8 I = 0. (20) 

The non-orthogonality matrix elements SAB = (A IB) enter linearly as a repulsive shift 
to the CP eigenvalues, 

E A  = ( A [ - V 2  + V A I A ) +  2 (AIVbIA) -  SA,(BIVbIA). (21) 

The price of absorbing all 'three-centreness' into the definition of the CP orbitals is 
twofold. First, these basis orbitals are environment-dependent and have to be deter- 
mined self-consistently (see Anderson 1968, Hoshino et al1985, 1986). Secondly. the 
secularequation (20) ingeneralis non-Hermitian. For acomprehensive accountofthese 
subtleties and how C~orbitalsare used in practice, consult either Bullett's(1980) review 
article or Anderson's (1984) paper. 

B f A  % # A  

3 2 .  Application within the Harris-Foulkes scheme 

I t  is clear from equation (17) that there is no unique way to separate the input potential 
into VA and V b ,  However, in order to preserve the explicit two-centre form of the 
secular equation (20) and write the HF energy functional within a TBB framework, VA 
andVb must beconstrainedto betwo-centreinnature.TodothisfortheHFone-electr0n 
potential V,[p'"] where p'" = 2 pA, we expand the many-body exchange-correlation 
potential about the site A as 

pxc[pi"l=pm[~A1+ 2 ( P x c b A  + ~ B ~ - P X C [ ~ A ~ ) ~ " . .  (22) 
B t A  

Neglecting three- and higher many-centre terms results in the following (asymmetric) 
decomposition: 

v A = ( - 2 / r A ) ~ f P A / I r - r ~ I + P ~ ~ ( p A )  

(23) 
1 ' ~  = (-2/rB) + / p a / ~ r -  r'I + p,,(pa + p B )  - pxc(pA) .  

For the dimer this is exact, VKS [pi"] = V'" = VA + V b ,  Otherwise, it is only approxi- 
mate, VKs[p'"] # V'" = V A  + X B # A  VL. 

Although the choice of pa may be independent of basis orbitals { IA)}, for simplicity 
we take it to be of the form pa = [ (rIA)I*. In this case all explicit painvise contributions 
to the~Fenergystemmingfrom thepotentialp&)cancel. Discardingthree- andhigher 
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many-centre terms, the only remaining exchange-correlaticn terms originate from the 
functional 

E, [p ' " ]  = I P in &,(Pi"). (24) 

To'ensure that these are painvise we follow Foulkes and Haydock (1989) and keep only 
two-centre terms in the many-body cluster expansion, 

If all sites are equivalent, contributions such as 

are approximated by 

ET I P A  [&,,(PA + PE)  - &xc(PA)l. (27) 
B # A  

Comparing the second lines of equations (26) and (27) ,  the cluster expansion (25) is 
consistent with using the expansion (22) about site A for the exchange-correlation 
energy density ~ ~ ~ ( p ) .  

Working through the generalized HF functional (equation ( Z ) ) ,  using the specific CP 
basis to include linearly non-orthogonality effects and keeping only painvise con- 
tributions in both the cluster and the on-site expansions of the exchange-correlation 
terms, the ground-state energy for hydrogen can be cast in the following TBB form: 

The attractive bond energy comes from summing over the occupied eigenvalues with 
reference to the energy level E" = EA. The .si are determined by solving the secular 
equation (20) ,  where the related hopping integral is given by 

The pair potential q is defined by grouping together the following non-orthogonality, 
exchange-correlation and classical electrostatic terms: 

ssu = (51 VLIA).  (29) 

'4" = -2SAB(BIvLIA) 

q x c  = I PA(&xc[PA + P B 1  - &xc[PA 1) (30) 

q s  = ~ P A ( - ~ I ~ E )  + / P B ( - 2 / r A )  + I P A P B i l r - r ' I  + 2 / R .  

The last term in equation (28), 

is the energy of a free neutral atom (as calculated within DF theory) and gives the 
reference energy. 
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To evaluate the right-hand side of (28) it is necessary to determine or estimate the 
environment-dependent CP orbitals { I A ) }  defined by the non-linear equation (18). This 
is a hard self-consistency problem, which has only been tackled in the simplest cases 
(Anderson 1969, Hoshino et al 1985). Instead, we choose a variational solution and 
represent each CP basis function with a simple 1s Slater orbital, (r lA)  = (p/~r)l/~ 
exp( -Era). Thehoppingintegra1,pairpotentialcomponentsandreferenceenergygiven 
by equations (29), (30) and (31) then reduce to the following expressions: 

S S U = ~ ( K +  L) -9~~[3/(64n)] ' /~(1y -IF) 
q"o = -2qssu) 

qxc -9~f3/(64~r)]"'Iy' - 2(-5a*/16) (32) 
qcs = c(U + J ' )  + 2 / R  
E., = g2 - 25 + 5518 - En*/16 

where ax = n(243/4)[3/(64~~)]~/~ and the exchangecorrelation integral I F  is defined 
in the appendix. As before, the integrals K ,  L ,  J ,  J' and S are given by Slater (1963). 

In figure 1 the resulting CP ground-state energy for diatomic hydrogen is plotted. In 
this case, equality holds in equation (28) if true CP orbitals were used. The difference 
therefore between this and the HFsolution gives some measure of the error incurred in 
our representation. Although large in places, this error isof asimilar order to that found 
by Hoshino er al (1985). who investigated numerous minimal atomic basis rep- 
resentations of general localizedorbitals. For H: they found that a single atomicorbital 
represmtation of Anderson's CP orbitals produced errors at equilibrium of 1.248 eV, 
7.6% of the total energy, but 30% of the binding energy. Enlarging the basis set either 
on the single site or by extending it over neighbouring sites systematically reduces this 
error (Hoshinoeta/l985,1986). In this paper we will partially compensate for this error 
by adjusting the exchange-correlation parameter a, and letting cr = 0.871 (see section 
5 for details). 

4. Exchange-eorrelation integrals 

Although all the necessary exchange-correlation tenps in the energy expression 
(equation (32)) can be reduced to a few one-dimensional integralsthat can be evaluated 
numerically (see appendix), inorder to obtainexplicit analyticexpressions we introduce 
one further approximation. namely 

Changing to spheroidal coordinates (see appendix) then enables all exchange-cor- 
relation integrals to be estimated to better than 6%. For the range of interest, R 3 1, 
this error is less than 2%. The resulting hopping integral and pair potential have the 
following analytic forms: 

ssu(E, R ,  cr)/g = e-'"(5/8w - 7/4) + e-3W(-1/4 - 5/8w) 
+ cu(243/2)[3/(64~r~)]'~~[e-"(15/16w - 5/12) 

+ e-4W13(14w/135 + 7/45 - 939/500n*) + e-5wi3(15/16w + 1/4) 

+ (1/15) e-3W(9/200w + 1/30)] (34) 
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q(E, R ,  a ' ) /ZE = e-'"(5/8 + l /w  - 3w/4 - w2/6) - S(w)[ssu(E, R ,  a)/E] 

+ cu(243/64)[3/(64~~)]"~[e-~"~~(189/64w - 11/12 - llw/18) 

- e-'"(4/3 + 3/w) + e-4w(1/24 + 3/64w)]. (35) 
Here the orbital overlap is given by S(w) = (1 + w + id) exp(-w) where w = ER and 
the units of energy are rydbergs. 

5. Transferability and the pair potential 

5.1.  A first-nearest-neighbour model 

To study the limitations of using an environment-independent TB parametrization we 
focus our attention on a first-nearest-neighbour model consisting of N equivalent sites. 
The tight-binding energy (28) per atom can then be written as 

E / N  = E = &Z[sso(E, R ,  a')@ + q(E, R ,  a')] + C. (36) 
Here 0 is the bond order between s orbitals on neighbouring sites, 2 is the local 
coordination and with reference to the exact free atomic energies the constant C isgiven 
by 

C= 5' - Z E i  5518 - &*/I6 - (-1). (37) 

As hydrogen atoms are brought together, the Slater 1s orbitals may be allowed to relax 
to the local environment by optimizing the exponent E so that the energy expression (36) 
is minimized at each interatomic separation R .  For fixed a', by exploiting the functional 
form of the hopping integral sso(R,  5,  a) = EF(w) and pair potential q ( R ,  E ,  cu) = 
EG(w) (equations (34) and (35)) and denoting differentiation by a prime, this vari- 
ationally optimal exponent has the parametrized form 

E(w) = - f Z [ ( F O  + G) + w(FO + G')] 
(38) 

R(w) = w/E(w). 
At infinite separation it has the value 5.. = &(a'*/16 + 11/8), which is only equal to 1 
(the hydrogenic free-atom limit) if a' = 0.9793, the value needed to give complete 
cancellation of the self electron-electron term. For equilibrium separations Req = weq/ 
Eeq the optimal exponent (38) and binding energy (36) simplify further to give 

Esq = 

E,,/N = = € ( E e q ,  R e q )  = 1 - (Eeq)'. (39) 

= E= - +Z[F(w,,)@ + G(Wq)l 
and 

To relate the above optimal case when the orbital exponent is environment-depen- 
dent and depends on the interatomic separation R to the transferable case where the 
exponent 5 is fixed we exploit the identities 

(40) 
( a E l a E ) E e q . R q  = ( a E / a R ) G e q , R q  = 

weq = EeqReq = ER,(E). 
The equilibrium binding energy E,,(g), atomic separation Req(E) and bulk modulus 
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Figure 3. Binding energies for diatomic (HJ and bulk metallic simple cubic (SC) and face 
centred cubic (FCC) hydrogen. Resultsobtained within a first-nearest.neighbour TBB model. 
using the analytic pair potential and hopping integral of equations (34) and (35), are com- 
pared for cases in which the orbital exponent is either environment-dependent (central 
panel) or fixed at the vdlue E = 1.043 (right panel). Io both cases (1 = 0.871. Benchmark 
calculationsof Kola and Wolniewicz (1965) and Min era1 (1984) (left panel) arc plolted for 
reference. 

Beq(E) corresponding to the fixed exponent j can then be expanded about the optimal 
equilibrium exponent Eeq and separation Re, = Rsg(Eeq) to  give 

Eeq(E) =Eeq + O((AE)’ ,  (AR)’ ,  AEAR) 

Beq(E) = &qrcq(E/Eeq)4 = B,z,(l + 4AE/Ecq + . . ‘1. 
R,(E) = weq/E = R,(1 - AE& + , . .) (41) 

Here E,, and Eq are the optimal equilibrium bulk modulus and binding energy, and 

Differences between using a fixed or optimal exponent are second order in A 5  = 
5 - Esq for the binding energy (as AR = R ( j )  - Reg - AE) and first order in AEfor the 
equilibrium separation, whereas an extra enhancement factor r,, augments B,, for 
thc bulk modulus B,,(E). 

In figure 3 we display the binding energy curves for diatomic and bulk metallic simple 
cubtc (sc) and face centred cubic (FcC) hydrogen. The leftmost panel gives the accurate 
calculationsofKolosand Wolni~~~~icz(1965)andMinera1(1984),withwhich\r~compare 
our fint-nearest-neighbour TB results obtained using the derived analytic pair potential 
and hopping integral of equations (34) and (35). The central panel gives the energy 
curves obtained when the optimal exponents defined by equation (38) and plotted in 
figure 1 are used. For the rightmost panel the exponent 5 is fixed to its equilibrium balue 
(39) fortheoptimal simplecubiccurve. namely5 = 1.013 (see table 1). In both the latter 
TB cases the exchange-corrslation parameter n is chosen to reproduce the accurate 
equilibrium binding energy of Min er a/ (1981) for the bulk simple cubic case. namely 
n = 0.871. 
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Figure 4. Comparison of the optimal 
orbital exponents delinedbyequation (40) 
for diatomic (HJ and bulk metallicsimple 
cubic (sc) and face centred cubic (FCC) 
hydrogen, Equilibrium values are denoted 
by open triangles. In all cases n = 0.871. 
ForreferencethefLwedexponentE = 1.043 
is also plotted. 

Table 1. Equilibrium values of optimal orbital exponents, E., = E(R& for n = 0.871 

Structure 5, 

FCC 1.0368 
sc 1.0430 
HI 1.0767 

Although both the TB cases qualitatively reproduce the benchmark equilibrium 
separations and binding energies (see table 2), as expected from our previous analysis 
(equation (41)) the dominant difference between the environment-dependent and 
environment-independent TB cases are in the equilibrium curvatures. Taking the FCC 
lattice as an example, AE - 0.006 is small, so the percentage errors incurred in the 
equilibrium binding energy and atomic separation in using the exponent E = 1.043 
insteadoftheoptimalexponent EFCC(R) areonlyO.l% and0.6%. For the bulkmodulus, 
owingto theextraenhancement factor zeq (equation (42)), thecorresponding difference 
is 112%. Similar results are obtained for diatomic and bulk FCC hydrogen, as may be 
seen in table 2. This can be understood from figure 4, as although 5 = 1.043 is close to 
all the equilibrium values of the optimal exponents, denoted there by open triangles (for 
numerical values, see table l), the orbital exponents are intrinsically very environment 
dependent. This dependence can be dramatically demonstrated by taking the orbital 
exponent to be a fixed function of the interatomic separation, say E = E,(R). In this case 
the hydrogen dimer is incorrectly predicted to be less stable in energy than bulk sc 
hydrogen! 
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Table 2. Equilibrium binding energies Eo, interatomic separations Ro, bulk moduli Bn and 
vibrational frequencies va for the metallic and diatomic hydroEen curves eiven in ficure 3. 

FCC Minetnl(l98J) g = & ( R )  5 = 1.043 

Eo(eV/atom) -1.038 -1.019 -1.018 
Rn ( a 4  3.045 3.468 3.447 
Bo (Mbar) 1.251 0.614 1.299 

sc Min etnl(1984) 5 = ( R )  e = 1.043 

E,(eV/atom) -1.195 -1.195 -1,195 
RO ( 4  2.152 2.935 2.935 
B,(Mbar) 1.123 0.615 1.093 

Kolos and 
Wolniewiu 

H2 (1965) E = EH, ( R )  f = 1.043 

Eo (eV/atom) -2.374 -2.169 -2.152 
1.511 
3699 

1.500 
4092 

From this analytic first-nearest-neighbour study of hydrogen it is not possible to 
reproduce globally 'stiffness' properties that depend on the equilibriumcurvatures using 
a fixed, environment-independent TB parametrization. This agrees with Goodwin et 
nl's (1969) improved TB parametrization of silicon. which qualitatively reproduced 
equilibrium separation and binding energies, but only at the expense of a poorer overall 
fit of the equilibrium curvatures for the lattices considered. 

5.2. Errors in the cluster expansion 

Besides the environment dependence ofthe c~orbitals, thesecond element that governs 
the transferability of ssu and cp is the validity of neglecting three- and higher many. 
centre terms in the cluster expansion for the exchange-correlation functional E , , [ p ]  
(equation (25) ) .  

To obtain a 'back of an envelope' estimate for the errors incurred, we first consider 
the case of overlapping, uniform cubic electron densities, 

situated at positions r, = (x,, y,, zA) on an infinite simple cubic lattice of interatomic 
separation a. Noting that there is zero overlap of pA with similar densities situated at 
fourth- or higher nearest-neighbour separations, this system is equivalent to looking at 
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Working within the X O ~  approximation a free-electron gas of uniform density p = 
and letting E&) = -p*I3,  U,, and (equations (26) and (27)) can be evaluated as 

U,, = -N[ l /a  - l/(2a)] = -0.5(N/a) 
(44) 

(I, = -N[7(21'3 - l)/(2a)] = -0,91(N/a). 

This suggests that the relative errors in keeping only pairwise terms in the cluster 
expansion will be Large, being 82% for the above system of cubic densities. 

To quantify these errors explicitly for the derived pair potential of section 3.2, we 
recalculate Uxc and O,,for exponential densities pA = (E3/n) exp(-2ErA) in the case of 
thefixed~~parametrizationE = 1.043anda = 0.871. Placingthese densitiesonasimple 
cubic (sc) lattice at the equilibrium separation R:: = 2.935 results in a relative error of 
52%. In absolute terms this is 0.25 eV/atom or 21% of the relevant ab initio binding 
energy. Similar results are obtained for the face centred cubic (FCC) lattice, where at the 
equilibrium separation Rttc = 3.447 absolute errors are obtained of 0.27 eV/atom or 
26% of the ab initio binding energy. 

These errors may be interpreted as the cost of either constraining the bulk pair 
potential p? to have the same functional form as that for the dimer or of keeping only 
pairwise terms in a many-body expansion of the repulsive energy Erep. Although sizable, 
for the bulk systems considered these errors are of a similar magnitude. A cancellation 
oferrorscould beexpected for bulkcalculations where relative andnot absoluteenergies 
are important. 

5.3.  The nature of thepairpotential and hopping integral 

In figure 5 we plot the resulting hopping integral and pair potential for the fixed TB 
parametrization 01 = 0.871 and 5 = 1.043. To compare these derived functional forms 
with others used in the literature we determine their effective inverse scaling with 
interatomic separation R. This can be obtained for the pair potential p? by matching its 
logarithmic derivative 

d p?W 2[p?(R)] = ---ln[p?(R)] = -- 
dR p?(R) (45) 

with that obtained assuming an inverse power scaling, namely 2[R-"] = m/R. For the 
particular functional form p? = EG(w) (equation (35)) it scales as p? - R-", where m = 
2 [ p ? ] R  = - wG'/G. Similarly the hopping integral ssu = EF(w) (equation (34)) has an 
effective inverse scaling of ssu - R-", where n = %[ssu]R = -wF'/F. In table 3, m and 
n are listed together with the exponent R = m/n, which describes the effective scalingof 
q with ssu (i.e. p? - S S P ) .  As with Goodwin et ai's (1989) improved empirical scaling 
for silicon, where R = 2.27, for the equilibrium separations considered in table 3, alies 
in the range 2 < e < 2.5 commonly assumed in empirical TB parametrization of sp- 
bonded systems (Harrison 1983, Majewski and Vogl1987). In particular, it is interesting 
to note for the hydrogen dimer at Req(E) that the value of the effective inverse power 
scaling exponent for the hopping integral is close to the canonical scaling of ssu - R-' 
(Andersen and Jepsen 1984). 

To discuss the equilibrium and long-range nature of the pair potential p?, in figure 6 
we plot the physical decomposition of the HF energy for the hydrogen dimer as defined 
byequation (28). At equilibrium separations it is thus the interplay between the covalent 
bonding (Zssu), non-orthogonality (p?,,) and exchange-correlation (qrJ terms that is 
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0 1 2 3 4 5 

Interatomic scpwatlon la ." .  I 
Figure 5. The resulting tight-binding hopping integral sso and pair potential 'p (equations 
(34) and (35)) for the fixed TB parametrization n = 0.871 and E = 1.043, For reference the 
hinding energy of diatomic hydrogen (full curve) is also given. 

Table 3. Effective scaling exponents n,  m and I = i n / n  evaluated at the face centred cubic 
(FCC). simple cubic (sc) and diatomic (H:) equilibrium separations Req(E) for the fixed TB 
parametrization n = 0.871 and E = 1.043. 

Structure R,(g) n m r = m J n  

FCC 3,447 2894 6.719 2.322 
sc 2.935 2,393 5.085 2.125 
Hi 1 5 . 9  1.135 2.380 2.097 

important, not the classical electrostatic (pes) term, which is small in comparison. 
In particular, the pair potential p is dominated by the repulsive non-orthogonality 
contribution poo as assumed by Harrison (1983) and Majewski and Vogl (1987). For 
large separations the exchange-correlation contribution (I&) plays a more important 
role: for R > 5.0 the pair potential is attractive. 

6. Conclusions 

For the simplest case of a hydrogenic system we have derived from first principles an 
analytic pair potential and hopping integral. By exploiting their explicit functional form 
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Interatomic separation (a.". ) 

Figure 6. Breakdown of the binding energy (hull curve) of diatomic hydrogen in figure 5 into 
terms of an electrostatic (q-), exchange-correlation (c&), non-orthogonality (qnJ and 
bonding (2sso) nature. 

the cost of using a fixed, environment-independent, semiempirical parametrization was 
determined. It was shown that, although fully variational equilibrium binding energies 
and atomic separations were reproduced, it was not possible to obtain the correct 
equilibrium curvatures of structure types with very different local coordination using a 
single set of transferable parameters. This reflected the strong environment dependence 
of the hopping integral and pair potential. Errors incurred in keeping only painvise 
terms in a cluster expansion for the exchange and correlation functional were also 
evaluated and shown to be large, although of a similar magnitude for the lattices 
considered. 
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Appendix 

Using the notation of equation (9), the required exchange-correlation integrals used in 
this paper are given by 

A J Skinner and D G Pettifor 

Besides f:, these integrals do not have closed analytic forms, but can be reduced to a 
few one-dimensional integrals by changing to spheroidal coordinates ( A ,  p,  b),  In this 
system, p is the azimuthal angle about the axis joining the centres A and B, whereas the 
surfaces of revolution of constant A and p defined by 

rA + r B  = I R  
rA - r B  = p R  

amount tofamiliesofellipsoidsand hyperboloidswith foci at A andB. Thecorresponding 
volume element in these coordinates is 

(A3) 

Here we demonstrate this reduction explicitly for the integral I F .  Substituting the 
expression for xA and xB (equation (9)) and changing to spheroidal coordinates results 
in the following triple integral for iy: 

do = &R3(AZ - p 2 )  dA dp  da .  

R3 -4ERA 3 4/3 ce 

I?  = ($1 1, dA]:i dpIoh dP$IZ2 - p Z )  [ e x p ( 7 )  2413 cosh4b ( g p  R )  1, 
Integrating over the azimuthal angle p and exploiting the identity 

exp( -ax)n! 
y"exp(-ay)dy= (I"+, 

to perform the A integration reduces iF to the final one-dimensional form: 

15' = E ( ; )  7~ (( % + f w  + w')  Iowcosh4" zdr  - 1," zz 
2 4 1 3 3 ~ ~ - - 4 ~ / 3  

zdz). 

Similarly 

e8133 e-4W 
/XL I - z l / 3  - -- ic ((& + Bw + $ w Z )  1,"" coshgm zdz  - 1; r2 c o ~ h ~ ) ~  z dr) 
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and 

E 81 e-4wl j  

I4 )re - n1!3 64 w [sinh(tv/3)(4w/3 - U) + cosh(w/3)16w/3] ('47) 
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